My research aims to accelerate the development of electrochemical technologies for clean water and clean energy production by advancing fundamental understanding of ion-selective materials such as membranes and electrodes. These materials preferentially absorb or transport charged particles like Lithium or Sodium ions and are found in numerous environmental technologies including water desalination systems, fuel cells, electrolyzers, and flow batteries. I seek to develop a molecular-level understanding of the factors that make these materials selective to certain ions, and use that knowledge to engineer higher-performing materials. My multi-scale research approach integrates electrochemical and thermodynamic materials characterization methods, first principles simulations, and device testing to understand how materials behave under a wide variety of conditions.
PhD in Environmental Sciences and Engineering, 2019
University of North Carolina at Chapel Hill
Master of Science in Environmental Engineering, 2010
University of North Carolina at Chapel Hill
B.S. in Civil and Environmental Engineering, 2007
University of Texas at Austin
B.A. in Plan II, 2007
University of Texas at Austin
Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability. However, high-throughput calculations at the higher metaGGA level of theory are becoming feasible. The Strongly Constrainted and Appropriately Normed (SCAN) metaGGA functional offers superior accuracy to GGA across much of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from numerical instabilities that impede it’s use in high-throughput workflows. The recently-developed r2SCAN metaGGA functional promises accuracy similar to SCAN in addition to more robust numerical performance. However, its performance compared to SCAN has yet to be evaluated over a large group of solid materials. In this work, we compared r2SCAN and SCAN predictions for key properties of approximately 6,000 solid materials using a newly-developed high-throughput computational workflow. We find that r2SCAN predicts formation energies more accurately than SCAN and PBEsol for both strongly- and weakly-bound materials and that r2SCAN predicts systematically larger lattice constants than SCAN. We also find that r2SCAN requires modestly fewer computational resources than SCAN and offers significantly more reliable convergence. Thus, our large-scale benchmark confirms that r2SCAN has delivered on its promises of numerical efficiency and accuracy, making it a preferred choice for high-throughput metaGGA calculations.
Aqueous zinc batteries are recognized to suffer from H$^+$/Zn$^{2+}$ coinsertion in the cathode, but few approaches have been reported to suppress deleterious H+ intercalation. Herein, we realize this goal by tuning the solvation structure, using LiV$_2(PO_4)_3$ (LVP) as a model cathode. Phase conversion of LVP induced by H+ intercalation is observed in 4 m Zn(OTf)$_2$, whereas dominant Zn2+ insertion is confirmed in a ZnCl2 water-in-salt electrolyte (WiSE). This disparity is ascribed to the complete absence of free water and a strong Zn$^{2+}$–H$_2$O interaction in the latter that interrupts the H2O hydrogen bonding network, thus suppressing H+ intercalation. On the basis of this strategy, a novel PEG-based hybrid electrolyte is designed to replace the corrosive ZnCl$_2$ WiSE. This system exhibits an optimized Zn$^{2+} solvation sheath with a similar low free water content, showing not only much better suppression of H+ intercalation but also highly reversible Zn plating/stripping with a CE of ∼99.7% over 150 cycles.
Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.
Framework materials constitute a broad family of solids that range from zeolites and metal–organic frameworks (MOFs) to coordination polymers. The synthesis of such network structures typically rely on precursor molecular building blocks. As an example, the UiO-66 MOF series is constructed of hexanuclear [Zr6O4(OH)4(CO2)12] cluster nodes and linear carboxylate linkers. Unfortunately, these Zr MOF cluster nodes cannot currently be manufactured in a sustainable way, motivating a search for “green” alternative synthesis methods. Stabilizing the hexanuclear Zr(IV) cluster (i.e., the hexamer, {Zr612+}) without the use of organic ligation would enable the use of environmentally friendly solvents such as water. The Zr(IV) tetranuclear cluster (i.e., the tetramer, {Zr48+}) can be stabilized in solution with or without organic ligands, yet the hexamer has yet to be synthesized without supporting ligands. The reasons why certain zirconium clusters are favored in aqueous solution over others are not well understood. This study reports the relative thermodynamic instability of the hypothetical hexamer {Zr612+} compared to the ubiquitous {Zr48+} tetramer. Density functional theory calculations were performed to obtain the hydrolysis Gibbs free energy of these species and used to construct Zr Pourbaix diagrams that illustrate the effects of electrochemical potential, pH, and Zr(IV) concentration. It was found that the aqueous {Zr612+} hexamer is ∼17.8 kcal/mol less stable than the aqueous {Zr48+} tetramer at pH = 0, V = 0, and [Zr(IV)] = 1 M, which is an energy difference on the order of counterion interactions. Electronic structure analyses were used to explore trends in the highest occupied molecular orbital–lowest unoccupied molecular orbital gap, frontier molecular orbitals, and electrostatic potential distribution of these clusters. The evidence suggests that the aqueous {Zr612+} hexamer may be promoted with more strategic syntheses incorporating minimal ligands and counterions.
Electrodialysis, reverse electrodialysis, and related electrochemical processes are increasingly important technologies for water purification and renewable energy generation and storage. The electrical efficiency of these processes is directly related to the permselectivity of the ion exchange membranes (IEMs) – defined as the extent to which the membrane permits the passage of counter-ions (ions of opposite charge to the membrane, e.g., cations for a cation exchange membrane) while blocking passage of co-ions. Permselectivity is not a material constant, but rather depends on the concentration and composition of the electrolyte solutions in contact with the IEM. Thus, even though permselectivity is routinely measured at standardized conditions (usually 0.5 M/0.1 M NaCl or KCl), the practical utility of such data is limited because we lack an accurate, quantitative way of using it to predict permselectivity under relevant process conditions. Moreover, the concentration dependence of IEM permselectivity has historically been studied primarily by evaluating the performance of (reverse) electrodialysis stacks rather than individual membranes, which has made it difficult to relate the concentration dependence of permselectivity to specific membrane characteristics. In this study, we measured the permselectivity of four commercial IEMs in six different concentration gradients employing 4 M and 0.5 M NaCl as the high salt concentration. We then constructed a predictive model of membrane permselectivity based on the extended Nernst-Planck equation and investigated how accounting for convection and electrostatic effects (via Manning’s counter-ion condensation theory) affected model accuracy. We demonstrate that accurate, quantitative predictions of IEM permselectivity as a function of external salt concentrations are possible and require knowledge of only four easily measured membrane properties: water uptake, water permeability, charge, and thickness.
Reverse osmosis (RO), nanofiltration (NF), and ion exchange (IX) membranes are becoming increasingly important in water treatment, waste recovery, industrial product purification, renewable energy generation, and energy storage. While all three types of membranes are charged, dense polymers, each has historically been characterized using different methods relevant to their respective applications. This bifurcated characterization approach has obscured similarities among dense membranes that could potentially be exploited to advance membrane development. For example, we recently showed that the water and salt transport properties of commercial IX membranes, which are not frequently reported, are generally on the same order of magnitude as those of other desalination polymers. These findings beg the question whether IX membrane polymers might offer any advantages over RO/NF membranes for pressure-driven desalination, and invite further comparisons among the two different classes of membrane polymers (e.g., IX and RO/NF membranes). In this study, we used the solution-diffusion model as a common framework to compare the permeability, partition and diffusion coefficients, water permeance, and salt rejection of twenty commercial IX membranes with those of the active layers of commercial RO/NF membranes and other membrane polymers. Our analysis shows that the characteristics of all membranes fall within similar ranges, despite differences in intended use (e.g. pressure-driven vs. electric field-driven separations). Thus, the low water permeance of IX membranes compared to RO/NF membranes can be explained primarily by differences in thickness rather than permeability. We also show that IX membranes have excellent water/salt partitioning selectivity, while RO/NF active layers have superior diffusion selectivity, and discuss the implications of this comparison for ongoing membrane research.
Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.
Reverse electrodialysis has long been recognized as a tool for harnessing free energy from salinity gradients but has received little attention for its potential in energy storage applications. Here we present the experimental and modeled performance of a rechargeable electrodialytic battery system developed for the purpose of energy storage. Experimental round-trip energy efficiency ranged from 21.2% to 34.0% when cycling the system between 33% and 40-90% state of charge. A mass transport model based on chemical thermodynamics is also proposed to describe the system’s performance. Results indicate that, upon model calibration, the model effectively predicts experimental values. Experimental and modeled results suggest that the membrane resistance and osmosis are the primary sources of ohmic and faradaic energy losses, respectively. The results demonstrate that a functioning battery can be constructed using typical reverse electrodialysis stack components. Future improvements in membrane technology and optimization of the system chemistry offer promising avenues to improve the power density, energy density, and round-trip energy efficiency of the process.